© OLEH POLIHENKO, ROMAN ODARCHENKO, SERGIY GNATYUK EUROPEAN COOPERATION

DOI: https://doi.org/10.32070/ec.v3i47.89
Oleh Polihenko
PhD student,
National Aviation University
Ukraine, Kyiv
o.poligenko@ukr.net
ORCID ID: 0000-0002-2427-4976

Roman Odarchenko

Doctor of Science (Engineering),

Chair of Telecommunications and Radioelectronics Academic Department,
National Aviation University

Ukraine, Kyiv

odarchenko.r.s@ukr.net

ORCID ID: 0000-0002-7130-1375

Sergiy Gnatyuk

Doctor of Science (Engineering),

Vice dean of the Faculty of cybersecurity, computer and software engineering,
National Aviation University

Ukraine, Kyiv

s.gnatyuk@nau.edu.ua

ORCID ID: 0000-0003-4992-0564

ENTERPRISE INFORMATION SECURITY MANAGEMENT SYSTEM BASED ON
THE MODERN OBFUSCATION TECHNIQUE FOR MOBILE NETWORK OPERATORS

Abstract. In today's realities, with constantly developing information technologies
(lIoT, 5G, Big Data, Cloud technologies, etc.), software protection is an urgent issue in
the field of information security for each small, medium, or big enterprise. Also, software
protection is a very important task for such enterprises, as mobile network operators,
which, in order to ensure leadership in the market, produce a large number of modern
unique software products for their own needs. Moreover, the software is the intellectual
property of the enterprises, which developed it. The software is the intellectual property
of both large corporations and small companies. The low reliability of software protection
for enterprises is associated with a rather complex and time-consuming process, as well
as with a number of technical limitations, which contributes to the thriving of computer
piracy, inflicts colossal losses on IT companies and, of course, the state as a whole.

Therefore, the development of a new effective method of software protection, for the
moment, is a priority in the field of information security, and new methods and techniques
of software protection are needed for all specialized companies, which develop paid
software. Nowadays there are many different approaches to solving this problem. These
are encryption, watermarking, etc., but no one gives guaranteed results. That's why
modern companies engaged in software development, should provide their customers
with a more secure information product.

Volum 3(47) 2020 43

WSPO+PRACA EUROPEJSKA © OLEH POLIHENKO, ROMAN ODARCHENKO, SERGIY GNATYU

In this paper, the authors have provided the improved, more effective obfuscation
method, based on a new sequence of obfuscation transformations. This method allows
providing software protection of the enterprises from reverse engineering. To ensure the
effectiveness of the proposed method, the authors have developed a special software
product, based on cycles of operation and the creation of pseudocode to protect other
software products. In the process of writing this article, studies were conducted that
showed the following results. The product has become approximately 1.4 times more
secure, and the obfuscation rate has increased by 10 percent. Based on the foregoing,
the developed method can be followed to complicate the decoding process of existing
software products used in various enterprises.

In the future, it is planned to implement additional obfuscation transformations, as well
as a comparative analysis with existing obfuscation programs.

Keywords: enterprise, security management system, information security, obfuscation,
software, secure coding

Formulas: 9, fig.: 2, tabl.: 2, bibl.: 27

JEL Classification: C02, L96

Introduction. Mobile network operators (MNO) become one of the most rapidly
developing enterprises. Now we can observe the emergence of the first 5G commercial
networks. 5G wireless technology is another game-changer for software development.
More than any generation of wireless technology before it, 5G is a revolutionary upgrade.
Things like autonomous vehicles, virtual and augmented reality, games, remote control
devices and Internet of Things (loT) deployment will force to use of novel approaches in
software development. In this situation, it is also necessary to ensure the highest level of
software product protection.

Software security against computer pirates and unauthorized users is actual problem
during few decades. It makes serious damage to software engineering industry. This
problem is amplified by speed multimedia and Internet technologies development
because the quantity of ways to get non-license content grows every day. Modern world
characterized by break of software every year, month and day. It costs billions of US
dollars. The most serious attacks connected with code study and its hidden vulnerabilities
detection which are common during software tools creation.

In the core of every software tools there is intellectual property of its developers.
Software protection against unauthorized using, modifying and copying is the most
important issue in modern information and communication systems. Computer piracy
and illegal software using cause big damage for state economy particularly in hi-tech
sector.

Development of effective security methods for codes is background and wall on
the way of non-license products expansion. It is one of the main tasks for companies-
developers as well as for state policy in IT sector.

Today there are many approaches to this problem solving. These are encryption,
watermarking etc., but no one gives guaranteed result. Also, there are many obfuscation
transformations in scientific and technical literature [Wang, Wu, Chen, Wei 2018] but detail
obfuscation security methods description is absent. But this technology is one of prospect
method to make hard illegal code study and modification. From this viewpoint, the
development of new approaches and modification of existed obfuscation technologies is

44 Numer 3(47) 2020

© OLEH POLIHENKO, ROMAN ODARCHENKO, SERGIY GNATYUK EUROPEAN COOPERATION

actual task directed to growing efficiency of secure coding and protection against reverse
engineering.

Modern companies, which develop a big number of software products (i.e. mobile
network operators), should provide high-quality and secure information product to their
customers. An important aspect of software development is to guarantee its reliability and
integrity. lllegal intruders try to get source code and bypass the licensing stage. Therefore, it
is necessary to protect not only the software overall as well as the source code. Obfuscation
protection technique could be used to confuse program code, complicate the analysis and
comprehension of operation algorithms furthermore preserving the functional program
features. One of the main problems of software reliability is absence of the developed and
implemented software protection methods, especially absence of software code protection
from reverse engineering [Wang, Wu, Chen, Wei 2018; Stepanenko, Kinzeryavyy, Nagi,
Lozinskyi 2016; Kuang, Tang, Gong, Fang, Chena, Wang 2018].

Literature review and the problem statement. Experience in recent years has
shown that many IT companies around the world are facing challenges which require
involvement of cybersecurity departments [Anderson, Choobineh 2008; Mayadunne,
Park 2016; Yadegari, B., Johannesmeyer, Whitely, Debray 2015; Foket, De Bosschere, De
Sutter 2019; Uchenna, Ani, He, Tiwari 2017]. Indirect attacks by cybercriminals spread
pretty rapidly in terms of their number and threat scale, thus, affecting the quality of the
product and sometimes leading to a complete shutdown of some enterprises, including
government ones. This affects the reputation of the company or enterprise, and also leads
to colossal losses of financial resources [Yadegari, B., Johannesmeyer, Whitely, Debray
2015; Foket, De Bosschere, De Sutter 2019; Shariati, Bahmani, Shams 2011]. In this case,
the cybersecurity departments of companies / enterprises must possess the latest tools,
understand the algorithm of these crimes and react immediately, prior to damage is
caused [Sari 2015; Hu, Z., Gnatyuk, Sydorenko, Odarchenko, Gnatyuk 2016]. For example,
there is a progressive project Industry 4.0 [Cafasso, Calabrese, Casella, Bottani, Murino
2020; Dechow, Granlund, Mouritsen 2006; De Smit, Elhabashy, Wells, Camelio 2016;
Dzwigol, Dzwigol-Barosz, Miskiewicz, Kwilinski 2020; Dzwigot, Shcherbak, Semikina,
Vinichenko, Vasiuta 2019; Lu 2017; Miskiewicz 2019; Miskiewicz, Wolniak 2020], which
helps enterprises to automate production in order to get the maximum productivity with
minimal involvement of human labor [Wang, Wu, Chen, Wei 2018]. This software requires
financial investments from the production side and constant maintenance. Of course,
many will try to get such software for free, which will lead to the loss of the reputation of the
IT company which produces an unprotected product, as well as lead to financial losses in
general. In this case, this can be prevented by ultra-precise encryption, which will simply
be impossible for a cybercriminal to bypass using conventional algorithms. Software
security significantly increases the confidence of enterprises and gives the company an
impeccable reputation at all possible levels [Rangel 2019; Zeng, Koutny 2019; Granlund,
Mouritsen 2003]. Such an IT company will have better financial capabilities with those
advantages for the development of further modern technologies and software.

The analysis of modern approaches to obfuscation was carried out [Stepanenko,
Kinzeryavyy, Nagi, Lozinskyi 2016; Kuang, K., Tang, Gong, Fang, Chena, Wang 2018]
and it has showed a lot of attention from researchers to the basic obfuscation process
requirements, described categories of obfuscation distribution transformations and
presented obfuscation protection methods.

Volum 3(47) 2020 45

WSPO+PRACA EUROPEJSKA © OLEH POLIHENKO, ROMAN ODARCHENKO, SERGIY GNATYU

Modern obfuscation methods for secure coding were analyzed in review papers
[Stepanenko, Kinzeryavyy, Nagi, Lozinskyi 2016; Jeet, Dhir 2016] and paper contains
effective software security techniques [Kaur, Tomar 2018; Merhi, Ahluwalia 2019] with
some elements and procedures of code obfuscation.

However, a complex mechanism for source code protection that uses most of the
known obfuscation transformations is absent.

Consequently, to decrease the probability of the reverse engineering process
implementation it is important to develop a reliable technique of obfuscation protection
of executable software files.

The main purpose of research is to create a reliable obfuscation technique for software
security of the MNO enterprises that provides program code protection against the
reverse engineering process.

To achieve purpose the following tasks were completed:

- new obfuscation technique of enterprises software protection was developed;

- software tool for source code protection was created;

- experimental study of created software tool was carried out.

Next parts of paper contain theoretical background and experimental study of
proposed obfuscation technique.

Research results. The obfuscation technique called StiK was developed based on a
new sequence of obfuscation transformations to solve mentioned problems[Stepanenko,
Kinzeryavyy, Nagi, Lozinskyi 2016].

The input data for this technique is:

- Source Code A.

- Obfuscation Code Structure Transformation $=(S,,...S,), S is one of the
transformations: the restructuring of the arrays; the clone method; modification of loop
conditions; the dead code method; use of mark «goto»; the parallel code method i=1,6

- Obfuscation Transformation of Variables V=(V ..V, Sj, is one of the
transformations: inheritance relations modification, splitting or merging of variables,
huge variables, converting static data to procedure, j= 1,4.

- Obfuscation Punctuation Transformation P=(P1,P2), Pk, is one of the
transformations: inversion of code elements, token removing k= 173 .

In this technique, was determined the obfuscation sequence which must be
accomplished to provide effective software protection from the reverse engineering
process, to complicate the analysis process and comprehension of the program code
algorithm.

Code Obfuscation Technique Description:

Stage 1. First, the source code A is loaded into a memory fragment. This code is divided
into logical structures A=(A1,....,An), (Ax - the logical structure of the code A, nEN, x= Ln).
The amount of the logical structures is determined by the program code size. Then logic
units A, x=|,», are being transformed using some obfuscation structure transformations S,
i=1,6 - The number of transformations for each logical structure is determined accidentally.
The obfuscation transformation number for each A _should be at least three. The final part
is to combine all the elements into the code and to test its availability.

Stage 2. Next, the resulting code B was divide into logical structures B=(B1,....,.Bm) (By-
the logical structure of the code B, m&N, y=1,m). Logical structures By, y=1,m are being
processed by obfuscation variable transformationV, j=1,4 (the obfuscation transformation

46 Numer 3(47) 2020

© OLEH POLIHENKO, ROMAN ODARCHENKO, SERGIY GNATYUK EUROPEAN COOPERATION

number for each By should be at least two). Obtained transformed structures were
combined into program code C and its availability was tested.

Stage 3. The resulting code Cis being divided into logical structures C=(C,,....,C) (C, -
the logical structure of the code C, g€N, z=1,g). Next, logical structures Cz, z=1,g are
being transformed by obfuscation punctuation transformations P, k= 1,2. As a result of
these stages, the software code D is created and its availability is tested.

To provide more reliable software protection mechanism was proposed using more
marks «goto» after each obfuscation stage of the StiK method. This item increases the
stability index of the software code and the average difference index between the
transformation code and the source code. To implement it the violation of program logic
was used and development of the unreadable tangled code. The output software code is
completely modified however the program preserves a whole functionality of the source
code, presented on Figure 1. A pseudocode was developed for the StiK protection
method. The basic procedures according to the scheme is presented on Figure 2.

Punctuation transformation
P =(P1,...., Pk)

T‘))
A | Y

Division of the
program code
into logical

o 1 i i
o) K P
8] | Y 1
< 1 !
g 1 FunGoTo (A) FunGoTo (B) FunGoTo (C) 1
1 1
8 1 A A A 1
T mmmmmdee e e e ————— a
=} Y A A
A B C
v v v
> Dedicated memory of “StiK” method
S Y |
\4
A0 D
The source The transformation
code code

Figure 1 - Scheme of the obfuscation protection method
Source: developed by the authors

A procedure OpenfFile() is used to download the program code. Apply to its input the
file name that will be transformed.

Volum 3(47) 2020 47

WSPO+PRACA EUROPEJSKA © OLEH POLIHENKO, ROMAN ODARCHENKO, SERGIY GNATYU

A FunRand() is applied to generate a pseudorandom sequence whereby the
corresponding indexes was obtained that will be used for the code transformation.

A procedure DivFunction() is used to separate the program code into logical structure.

CodeStructure(), VariableFun(), PunctuationFun() procedures are applied for each stage
of obfuscation transformation. Data about logical structures and generated obfuscation
transformation indices in appropriate procedures were entered.

A FunGoTo() is an unconditional branch instruction, which is applied several times in
each transformation.

A procedure AssociationF() is used to combine separate logical structures into a single
code.

A procedure Cheking() is applied for sanity check of the generated code.

A procedure WriteFile() saves the transformed code as a new file.

Input: NameFile is the file name with the source code, transformations S, P, V.
Output: NameFileNew is the file name with the transformation code.
1. A=OpenFile(NameFile);
2.{A }=DivFunction(A), A=(A,.....A), A is the logical structure A, nEN, x= Ln
3. for(x=1;x<n;x++)
3.1{A }=FunGoTo({A })
3.2 for(x,=1;x,<3;x ++)
3.2.1.{i}=FunRand(S);
3.2.2. A =CodeStructure(A,S,i), i€ 1,6;
3.3.{A }=FunGoTo({A })
3.4. B=AssociationF({A });
4. {By}=DivFunction(B), B=(B,.....B_), Byis the logical structure B, meN, y=1,m;
5. forly=1,y<m,y++)
5.1 {By}=FunGoTo({By})
5.2 forly =1y <2,y ++)
5.2.1.{j}=FunRand(V);
5.2.2. By=Variab/eFun(By Vj)jE1,4;

5.3. {By}=FunGoTo({By})

54. C=AssociationF({By}); o
6.{C }=DivFunction(C), C=(C7,....,Cg), Cgis the logical structure C, g€N, z=1,g);
7. for(z=1,z<gz++)

7.1. {Cg}= FunGoTo({Cg})

7.2.for(z,=1;z.<1,z ++)

7.2.1. C = PunctuationFun(C ,Fz);
7.3. {Cg}=FunGoTo({Cg})
7.4. D=AssociationF({C });
8. Cheking(D)
9. WriteFile(D, NameFileNew)
Figure 2 - Pseudocode for the obfuscation protection method
Source: developed by the authors

Experimental Study and Discussion. The software tool was developed based on the
submitted sequence of operations and created pseudocode for protection method. The

48 Numer 3(47) 2020

© OLEH POLIHENKO, ROMAN ODARCHENKO, SERGIY GNATYUK EUROPEAN COOPERATION

StiK software tool was created using C++ programming language, in the Visual Studio
2013 programming environment. Obfuscation transformations were defined from each
category: the dead code method, usage of mark «goto», huge variables, token removing.

Experimental study was conducted to determine the speed characteristics of the
obfuscation process and the stability of the software code to the reverse engineering
process. The experimental two-part methodology was developed. The input data for these
experiments was 10 files with source code, they were transformed using the developed
software tool. Using this console tool and two-part experimental methodology the efficiency
of StiK was studied in following manner:

1. Obfuscation rate was assessed (Experiment 1).

2. Security of code against reverse engineering was assessed (Experiment 2).

Experimental studies were fulfilled using computer system with processor Intel (R)
Core (TM) i3-6100, 3.7GHz and 4 GB RAM based on 64-bit operation system Windows
7 Service Pack 1. Also all results were compared with similar results of well-known and
effective SmartAssembly obfuscator (see Table 2).

Experiment 1. To realize this experiment input files size and transformed files size as
well as time for obfuscation were fixed. Obfuscation rate was assessed using expression
v,=0/t,i= 7,70, where vi is obfuscation rate for i-th file; Oi is transformed i-th file size, ti
is time for i-th file obfuscation.

For all assessed obfyscators the parameter of middle rate was calculated using
expression vcep=§vf 7 . In Table 1 results of Experiment 1 are presented.

Table1 - Results of obfuscation rate assessing (Experiment 1)

File 1 2 3 4 5 6 7 8 9 10 | Middle
rate

File size, | 4.09 | 0.90 | 5.18 | 2.68 | 3.08 | 1.34 1.51 1.18 | 0.72 | 3.55
KB
ts 0.1 10.008| 0.14 |0.012{0.029| 0.042 | 0.028 | 0.016 | 0.038 | 0.027
Smart
Assembly
ts 0.10310.038| 0.12 | 0.058[0.061] 0.033 | 0041 | 0.022]0.017 | 0.058
StiK
File size, | 495 | 1.86 | 10.0 | 3.08 | 3.42 | 3.86 | 3.01 | 3.56 | 1.31 | 3.68
KB
Smart
Assembly
File size, | 8.23 | 3.75 | 14.7 | 6.97 | 5.86 | 4.71 496 | 527 | 3.95 | 533
KB
Stik
Rate, KB/s | 49.5 [202.5] 75.5 |256.6|118.9| 91.7 | 107.3 1 205.6 | 34.1 | 136.3 | 127.8
Smart
Assembly
Rate, KB/s| 82.9 | 99.7 1 132.6 [138.1| 96.1 [162.7 [125.9 [239.5]|232.4 | 95.9 | 140.6
Stik
Source: developed by the authors

In accordance to Table 1 StiK obfuscator is 10% faster than SmartAssembly.

Volum 3(47) 2020 49

WSPO+PRACA EUROPEJSKA © OLEH POLIHENKO, ROMAN ODARCHENKO, SERGIY GNATYU

Experiment 2. During this study 10 executed files were analyzed and these files were
protected using SmartAssembly and StiK obfuscators. Coefficient of code growing was
calculated usingformulak=CT /CP,i=1,10,where isnumber of processesintransformed
code, is number of processes in input code. Table 2 contains results of Experiment 2.

Table 2 - Results of security code against reverse engineering assessing (Experiment 2).
Categories 1 2 3 4 5 6 7 8 9 10 | Middle
rate

Number of processesin | 14 4 39 | 22 16 17 | 31 8 5 28 18.4

input code
Number of processes 55 19 | 383 | 58 38 [123 | 157 | 81 49 | 106 | 106.9
in StiK
Number of processesin | 47 | 26 | 187 | 39 67 84 | 85 46 32 | 79 69.2
Smart

Assembly
Coefficient for STiK 3.93 [4.75]19.82 | 2.64]| 238 | 724 [5.06| 1013 [9.80| 3.79 | 5.95
Coefficient for Smart| 3.36 |6.50|4.79 | 1.77 | 419 | 494 |2.74| 5.75 | 6.40]2.82| 4.33
Assembly

Source: developed by the authors

Conclusions. Industry 4.0 is a very progressive project, which aims to help enterprises to
automate production in order to get the maximum productivity with minimal involvement of
humanresources. That'swhy, nowdays, with constantly developinginformationtechnologies,
software protection is an urgent issue in the field of information security for the MNO
enterprises. In this paper, new obfuscation method for software protection for enterprises
was proposed and it was based on a new sequence of obfuscation transformations. It allows
to provide software protection from the reverse engineering. Also, the software tool has
been developed according to StiK method and experimental studies have been carried
out.

As a result, authors found that the average difference index between the transformation
code and the source code was 36.21% and the average speed characteristics for obfuscation
process were 140.6 KB per second. In accordance to experimental results StiK obfuscator
is 10% faster as well as 1.37 times more protected than analogues. This helps enterprises
to ensure data protection from the different types of attacks. Therefore it will help to save
investments and to increase the profit.

However, in the future, the implementation of more obfuscation transformations is
planning and also comparative analysis with existing obfuscation programs will be carried
out. On this basis, new techniques for increasing the information security of the enterprises
will be developed.

References

Anderson, E. E., & Choobineh, J. (2008). Enterprise information security strategies.
Computers & Security, 27(1-2), 22-29. https://doi.org/10.1016/j.cose.2008.03.002

Cafasso, D., Calabrese, C., Casella, G., Bottani, E., & Murino, T. (2020). Framework
for Selecting Manufacturing Simulation Software in Industry 4.0 Environment.
Sustainability, 12, 5909. https://doi.org/10.3390/su12155909

50 Numer 3(47) 2020

© OLEH POLIHENKO, ROMAN ODARCHENKO, SERGIY GNATYUK EUROPEAN COOPERATION

Danik, Yu., Hryschuk, R., & Gnatyuk, S. (2016). Synergistic effects of information and
cybernetic interaction in civil aviation. Aviation, 20(3), 137-144. https://doi.org/10.3
846/16487788.2016.1237787

De Smit, Z., Elhabashy, A. E., Wells, L. J., & Camelio, J. A. (2016). Cyber-physical security
challenges in manufacturing systems. Procedia Manufacturing, 5, 1060-1074. https://
doi.org/10.1016/j.promfg.2016.08.075

Dechow, N., Granlund, M., & Mouritsen, J. (2006). Management control of the complex
organization: relationships between management accounting and information
technology. Handbooks of Management Accounting Research, 2, 625-640. https://
doi.org/10.1016/51751-3243(06)02007-4

Dzwigol, H., Dzwigol-Barosz, M., Miskiewicz, R., & Kwilinski, A. (2020). Manager
Competency Assessment Model in the Conditions of Industry 4.0. Entrepreneurship
and Sustainability Issues, 7(4), 2630-2644. https://doi.org/10.9770/jesi.2020.7.4(5)

Dzwigot, H., Shcherbak, S., Semikina, M., Vinichenko, O., & Vasiuta, V. (2019). Formation
of Strategic Change Management System at an Enterprise. Academy of Strategic
Management Journal, 18(SI1), 1-8.

Foket, Ch., De Bosschere, K., & De Sutter, B. (2019). Effective and efficient java-type
obfuscation. Journal of Software: Practice and Experience, 50(2), 136-160. https://
doi.org/10.1002/spe.2773

Granlund, M., & Mouritsen, J. (2003). Introduction: problematizing the relationship
between management control and information technology. European Accounting
Review, 12(1), 77-83. https://doi.org/10.1080/0963818031000087925

Hu, Z., Gnatyuk, V., Sydorenko, V., Odarchenko, R., & Gnatyuk, S. (2016). Cyber Stealth
Attacks in Critical Information Infrastructures. IEEE Systems Journal, 12(2), 1778-
1792. https://doi.org/10.1109/JSYST.2015.2487684

Henrie, M. (2015). Cyber Security Risk Management in the SCADA Critical Infrastructure
Environment. Engineering Management Journal, 25(2), 38-45. https://doi.org/10.10
80/10429247.2013.11431973

Jeet, K., & Dhir, R. (2016). Software Module Clustering Using Hybrid Socio-Evolutionary
Algorithms. International Journal of Information Engineering and Electronic Business,
8(4), 43-53. https://doi.org/10.5815/ijieeb.2016.04.06

Kaur, J., & Tomar, P. (2018). Clustering based Architecture for Software Component
Selection. International Journal of Modern Education and Computer Science, 10(8),
33-40. https://doi.org/10.5815/ijmecs.2018.08.04

Kuang, K., Tang, Z., Gong, X., Fang, D., Chena, X., & Wang, Z. (2018). Enhance virtual-
machine-based code obfuscation security through dynamic bytecode scheduling.
Computers & Security, 74, 202-220. https://doi.org/10.1016/j.cose.2018.01.008

Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research
issues.Journal of Industrial Information Integration, 6, 1-10. https://doi.org/10.1016/j.
jii.2017.04.005

Mayadunne, S., & Park, S. (2016). An economic model to evaluate information security
investment of risk-taking small and medium enterprises. International Journal of
Production Economics, 182, 519-530. https://doi.org/10.1109/SP.2015.47

Merhi, M. ., & Ahluwalia, P.(2019). Examining the impact of deterrence factors and norms
on resistance to Information Systems Security. Computers in Human Behavior, 92,
37-46. https://doi.org/10.1016/j.chb.2018.10.031

Volum 3(47) 2020 51

WSPO+PRACA EUROPEJSKA © OLEH POLIHENKO, ROMAN ODARCHENKO, SERGIY GNATYU

Miskiewicz, R.(2019). Challenges Facing Management Practice in the Light of Industry 4.0:
The Example of Poland. Virtual Economics, 2(2), 37-47. https://doi.org/10.34021/
ve.2019.02.02(2).

Miskiewicz, R, & Wolniak, R. (2020). Practical Application of the Industry 4.0 Concept in
a Steel Company. Sustainability, 12(14), 5776. https://doi.org/10.3390/su12145776

Rangel, A. (2019). Why enterprises need to adopt 'need-to-know’ security. Computer
Fraud & Security, 2019(12), 9-12. https://doi.org/10.1016/S1361-3723(19)30127-7

Sari, A. (2015). Review of Anomaly Detection Systems in Cloud Networks and Survey
of Cloud Security Measures in Cloud Storage Applications. Journal of Information
Security, 6(2), 142-154. https://doi.org/10.4236/jis.2015.62015

Shariati, M., Bahmani, F., & Shams, F. (2011). Enterprise information security, a review of
architectures and frameworks from interoperability perspective. Procedia Computer
Science, 3, 537-543. https://doi.org/10.1016/j.procs.2010.12.089

Stepanenko, ., Kinzeryavyy, V., Nagi, A., Lozinskyi, . (2016). Modern obfuscation methods
for secure coding. Ukrainian Scientific Journal of Information Security, 22(1), 32-37.
https://doi.org/10.18372/2225-5036.22.10451

Uchenna, P, Ani, D., He, H. M., & Tiwari, A. (2017). Review of cybersecurity issues in
industrial critical infrastructure: manufacturing in perspective. Journal of Cyber
Security Technology, 1(1), 32-74. https://doi.org/10.1080/23742917.2016.1252211

Wang, P, Wu, D., Chen, Z., & Wei, T. (2018). Protecting million-user 10OS apps with
obfuscation: motivations, pitfalls, and experience. In ICSE-SEIP '18: Proceedings of
the 40th International Conference on Software Engineering: Software Engineering in
Practice. Association for Computing Machinery. New York, NY, United States. https://
doi.org/10.1145/3183519.3183524

Yadegari, B., Johannesmeyer, B., Whitely, B., & Debray, S. (2015). A generic approach
to automatic deobfuscation of executable code. IEEE Symposium on Security and
Privacy, San Jose, CA, 674-691. https://doi.org/10.1109/SP.2015.47

Zeng, W., & Koutny, M. (2019). Modelling and analysis of corporate efficiency and
productivity loss associated with enterpriseinformationsecuritytechnologies.Journal
of Information Security and Applications, 49, 102385. https://doi.org/10.1016/].
jisa.2019.102385

Received: 20.06.2020
Accepted: 28.06.2020
Published: 31.07.2020

52 Numer 3(47) 2020

